The Number of Prime Divisors of Certain Mersenne Numbers*

By John R. Ehrman

It has been conjectured by Gillies [1] that if $M_p = 2^p - 1$ is the Mersenne number for some prime p, and if $A < B \leq \sqrt{M_p}$ as B/A and $M_p \to \infty$, then the number of prime divisors of M_p in the interval [A, B] is Poisson distributed, with mean

(1)
$$m \sim \log (\log B/\log A) \quad \text{if} \quad A \ge 2p \text{, or} \\ m \sim \log (\log B/\log 2p) \quad \text{if} \quad A < 2p \text{.}$$

It is the purpose of this paper to describe two tests of a modified form of this conjecture.

It is known that all divisors of M_p must be of the form 2kp + 1 and simultaneously of the form $8k' \pm 1$, where k and k' are arbitrary integers. Also, the prime divisors of M_p may be of one of the forms 4n + 1 or 4n + 3. Thus if p =4n + 1, the smallest possible divisor q is 6p + 1, and if p = 4n + 3, the smallest possible divisor is q = 2p + 1. Thus Eq. (1) is modified slightly: the expected number of prime divisors of M_p in the interval [Q, B], where Q is not less than the smallest possible divisor of M_p , $Q < B \leq \sqrt{M_p}$, and as B/Q, $M_p \to \infty$, is Poisson distributed with mean

(2)
$$m_Q \sim \log (\log B / \log Q)$$
.

Since the observed results in a group are drawn from two populations corresponding to the two forms of p, there is a question as to what value m should be used for the estimated mean number of divisors. It would be possible, for example, to separate the two populations and test the samples independently. It was felt, however, that a fuller test of the applicability of the conjecture (2) could be made by testing all primes with no distinction as to form.

In calculating an estimate of the mean m to be used in statistical tests, it was noted that

(a) the sum of two independent random variables from Poisson distributions with parameters m_1 and m_2 has a Poisson distribution with parameter $(m_1 + m_2)$;

(b) if $\pi(x; k, t)$ is the number of primes $p \equiv t \pmod{k}$ which do not exceed x, and if (k, t) = 1, then [2]

$$\pi(x; k, t) \sim \pi(x)/\phi(k)$$
.

This means that one may expect nearly equal numbers of primes of the forms 4n + 1 and 4n + 3 in a large sample of primes; this is the justification for not distinguishing the primes as to form.

Thus an unbiased asymptotic estimate of the mean may be taken to be

Received November 9, 1966. Revised February 13, 1967.

^{*} Work supported by U. S. Atomic Energy Commission.

(3)
$$m = \frac{1}{2} (m_{2p+1} + m_{6p+1}).$$

Thus, for example, in the interval $100000 , it is found that <math>m_{2p+1} = 0.5645$ and $m_{6p+1} = 0.4784$, so that the Mersenne number corresponding to a prime drawn at random in the interval would be expected to have an average of 0.52 divisors less than 2^{31} .

The tests performed on the results given in [3] were a test of the mean number of divisors, and a test of their Poisson distribution. Because the change in p over each of the intervals tested is relatively small, the value of p used in computing mfrom Eq. (3) was simply the midpoint of the interval in p from which the sample was drawn.

A program was written for an IBM System/360 (Model 50) computer which tested for divisors of M_p using the congruence

$$2^p \equiv 1 \pmod{q}$$
.

The test was coded [4] in the following manner:

1. In binary form, $p = \sum_{i=0}^{n} a_i 2^i$, and $2^p = \prod_{i=0}^{n} (2^{2^i})^{a_i}$.

2. Let $R_i \equiv 2^{2^i} \pmod{q} \equiv R_{i-1}^2 \pmod{q}$, and $S_j \equiv \prod_{i=0}^j (R_i)^{a_i} \pmod{q}$.

Thus S_j need be computed from S_{j-1} only if $a_j = 1$.

3. If
$$S_n = 1, q | M_p$$
.

4. The first five steps of the calculation may be done in one step by taking the five low-order bits of p to compute $R_4 = 2^{p \pmod{32}}$.

Divisors $q < 2^{31}$ were computed for 100000 . To compare the observed distribution of primes with that predicted by Eqs. (2) and (3), the values of <math>p were grouped so that p fell into one of the 80 groups defined by

$$100000 + 2500i$$

i = 0(1)79. In each group, the total number of primes observed and the number of primes with j divisors were counted. These results are tabulated in Table I. For each p which has one or more divisors $q < 2^{31}$, the value of p and the associated values of k = (q - 1)/2p are tabulated in [3].

To test the estimate of m, N samples of p were observed between limits L and U, where $N = \pi(U) - \pi(L)$, and L . The total number of divisors <math>T was counted, and the sample mean $\bar{x} = T/N$ was computed. The sample variance was found from

$$s^{2} = \frac{1}{N} \sum_{j=1}^{N} D_{j}^{2} - (\overline{x})^{2} = \frac{1}{N} \sum_{n=1}^{5} n^{2} K_{n} - (\overline{x})^{2}$$
,

where D_j is the number of divisors observed for the *j*th prime in the sample, and K_n is the number of Mersenne numbers in the interval with *n* divisors. (Because of the method used, no tests were made for multiple factors.) As the number of observations becomes large, it is expected that the variable

$$t = (N-1)^{1/2}(\bar{x}-m)/s$$

should become normally distributed (0, 1). The observed values of N, D, and t for each group are given in Table I. The expected number of divisors E is simply the product of m and N.

701

$\frac{1}{t}$	-0.844	1.840	-1.404 0.484	-0.435	0.189	-0.075	-1.056	-0.110	0.069	0.010	0.282	-0.881	1.374	1.034	-0.561	1.347	1.487	-1.396	0.167	0.470	-1.554	0.154	-0.194	-0.213	-0.565	0.774	0.723	0.933	0.163	-1.412	0.397	-0.796	2.205	-0.725	0.867	0.192	-0.722	-0.377
χ^{2}	0.720	0110	4.301 0 109	0.414	0.334	0.612	0.900	0.201	0.299	0.203	0.233	1.405	2.526	1.319	1.398	2.946	4.719	4.674	1.616	3.199	3.043	0.971	0.049	0.531	0.718	1.662	1.029	2.836	0.057	3.378	3.076	1.787	5.753	1.035	2.072	1.199	3.483	0.562
E	115	AU1	113	107	107	109	109	112	107	103	110	104	104	112	103	105	98	104	105	106	101	102	67	98	100	101	94	101	66	66	104	92	98	103	26	94	96	96
Т	107	001	34 110	103	109	109	66	111	108	104	113	60	119	124	98	119	114	92	107	111	88	104	96	96	95	109	101	111	101	86	108	85	123	97	106	96	89	93
K_5	00			0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K_4	0-		04	0	0	0	0	1	0		0	0			0	0	-	0	0	0	0	0	0	0	۲	0	0	0	0	0	0	٦	1	٦	0	-	0	0
K_3	~ ~	+ c	4 LC	က	က	4	7	1	2	0	0	01		51 (ŝ	(n)	0	0	က	0	0	က	-	0	0	0	1	٦	4	0	0	က	ი	0	7	0	က	7
K_2	17	17	11 11	17	16	18	16	17	13	13	19	13	21	7 0	11	18	15	×	20	14	11	13	17	17	14	21	19	17	13	15	13	11	19	13	15	19	16	12
K_1	64 7.9		999 999	09	68	61	61	20	61	63	69	$\overline{99}$	20	74	29	$\frac{74}{2}$	74	70	58	22	00	69	59	56	57	61	09	74	63	50	76	50	72	29	20	54	48	63
K_0	138 119	120	133	129	122	132	136	132	131	126	129	128	116	129	127		108	132	133	124	130	125	124	127	134	125	115	120	127	141	127	130	113	138	119	125	137	128
N_1	117 93	106	100	106	106	103	105	104	109	96	121	96 96	201 201	/11/	102	110	101	111	106	108	105	104	98	98	106	106	95	106	109	107	115	94	104	108	66	66	98	100
Ν	222 210	012	219	209	209	215	215	221	212	206	219	208	506	97.7	208	212	200	212	214	217	207	210	201	202	208	209	195	212	207	208	218	195	208	219	206	199	204	205
Interval in P	100000-102500	105000-107500	107500-110000	110000 - 112500	112500 - 115000	115000 - 117500	117500 - 120000	120000-122500	122500-125000	125000-127500	127500-130000	130000-132500	132500-135000	135000-137500	13/500-140000		142500 - 145000	145000 - 147500	147500 - 150000	150000 - 152500	152500 - 155000	155000 - 157500	157500 - 160000	160000 - 162500	162500 - 165000	165000 - 167500	167500 - 170000	170000 - 172500	172500 - 175000	175000-177500	177500 - 180000	180000 - 182500	182500 - 185000	185000 - 187500	187500 - 190000	190000 - 192500	192500 - 195000	195000-197500

TABLE I

702

J. R. EHRMAN

	PRIME DIVISORS OF MERSENNE NUMBERS	703
$\begin{array}{c} 1.000\\ 0.392\\ 0.392\\ -0.108\\ -0.108\\ 0.912\\ 0.485\\ -0.118\\ 0.445\\ 0.679\\ 0.679\\ 0.413\end{array}$	$\begin{array}{c} -0.250\\ 2.068\\ -0.250\\ 1.149\\ 1.149\\ 0.299\\ 1.149\\ 0.299\\ 0.298\\ $	$1.660 \\ 0.144 \\ 1.233 \\ 0.661 \\ 0.661$
$\begin{array}{c} 1.921\\ 0.612\\ 1.071\\ 1.071\\ 1.911\\ 0.692\\ 0.321\\ 0.341\\ 0.345\\ 0.386\\ 0.$	$\begin{array}{c} & 0.22\\ & 0.222\\ & 0.350\\ & 0.350\\ & 0.356\\ & 0.356\\ & 0.356\\ & 0.356\\ & 0.356\\ & 0.356\\ & 0.238\\ & 0.23$	$\begin{array}{c} 3.264 \\ 0.166 \\ 2.332 \\ 0.285 \end{array}$
$\begin{array}{c} 998 \\ 993 \\$	22888882000000000000000000000000000000	
$\begin{array}{c} 1 \\ 9 \\ 9 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 113\\ 123\\ 123\\ 123\\ 123\\ 123\\ 123\\ 123\\$	$\begin{array}{c}105\\86\\96\\90\end{array}$
000000000000000000000000000000000000000		0000
00-000000000000000000000000000000000000	0000-00-000000-0-00-0	010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	140mm44011m00m10001040001	84
20 11 12 12 12 12 12 12 12 12 12 12 12 12	12 10 11 10 12 12 12 12 12 12 12 12 12 12 12 12 12	$16 \\ 13 \\ 13 \\ 11 \\ 11$
$66 \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\$	6000000000000000000000000000000000000	
121 121 121 122 123 123 123 123 123 123	$\begin{array}{c} 112\\112\\122\\122\\122\\122\\122\\122\\122\\122$	11
$\begin{array}{c}111\\102\\96\\99\\100\\103\\100\\100\\102\\102\\102\\102\\102\\102\\102\\102$	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $	$\begin{array}{c} 100\\ 99\\ 95\\ 93\\ \mathrm{Average}\ t \end{array}$
2000000000000000000000000000000000000	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$	
$\begin{array}{c} 197500-202000\\ 200000-202500\\ 202500-205000\\ 207500-207500\\ 210000-212500\\ 2125000-217500\\ 217500-217500\\ 2225000-222500\\ 222500-222500\\ 222500-222500\\ 2225000-2225000\\ 2225000-222000\\ 220000-222000\\ 220000000000\\ 220000000000$	227500-25000 235000-23500 23500-237500 237500-245000 247500-245000 247500-255000 247500-257500 257500-257500 257500-257500 257500-257500 257500-257500 257500-257500 257500-257500 257500-277500 287500-282500 287500-282500 287500-287500 287500-28000 2875000-28000 2875000-28000 287500000 2875000000000000000000000000000000000000	$\begin{array}{l} \hline 290000-292500\\ 292500-295000\\ 295000-297500\\ 297500-300000\\ \hline \end{array}$ Average $\chi^2=1.947$

J. R. EHRMAN

To test the hypothesis of Poisson distribution, a chi-squared test was performed on the observed distribution of divisors. The counts were put in three classes: no divisors, one divisor, and two or more divisors; the numbers of primes with idivisors are listed in the columns K_i for i = 0(1)5. (See also reference [5].) The computed values of chi-squared for each of the eighty groups are given in Table I. The values of chi-squared were computed from the formula

$$\chi^{2} = (Ne^{-m} - K_{0})^{2} + (Nme^{-m} - K_{1})^{2} + (N(1 - e^{-m} - me^{-m}) - K_{2} - K_{3} - K_{4} - K_{5})^{2}$$

and are given in Table I in the column headed χ^2 .

To test for the possibility that distinguishing between primes of the form 4n + 1 and 4n + 3 might lead to significantly different results, t and χ^2 were also computed for $m = (1/N)[N_1m_{6p+1} + (N - N_1)m_{2p+1}]$, where N_1 is the number of primes $p \equiv 1 \pmod{4}$ observed in the interval. The average values of t and χ^2 obtained were slightly larger than those given at the end of Table I.

A comparison of the expected and observed distributions of t and χ^2 is given in Table II. The agreement is seen to be satisfactory.

TABLE II

Upper Limit	Number	Upper Limit on	Number
on t	of Values	Chi-Squared	of Values
$-1.15 \\674 \\319 \\ 0.0 \\ +.319 \\ +.674 \\ +1.15 \\ \infty$	$5 \\ 11 \\ 7 \\ 10 \\ 13 \\ 8 \\ 12 \\ 14$	$\begin{array}{c} 0.266\\ 0.576\\ 0.940\\ 1.386\\ 1.962\\ 2.772\\ 4.158\\ \infty\end{array}$	$ \begin{array}{r} 10 \\ 12 \\ 9 \\ 10 \\ 8 \\ 8 \\ 14 \\ 9 \end{array} $

Observed distribution of t and chi-squared. In both cases, the expected number of values in the ranges indicated is 10.

I wish to thank J. C. Butcher for several stimulating and helpful discussions, and the referee for several suggestions.

Stanford Linear Accelerator Center Stanford University Stanford, California

1. D. B. GILLIES, "Three new Mersenne primes and a statistical theory," *Math. Comp.*, v. 18, 1964, p. 94; Also, Digital Computer Laboratory Report No. 138, Univ. of Illinois, Urbana, Ill. MR 28 #2990.

2. W. J. LEVEQUE, Topics in Number Theory, Vol. 2, Addison-Wesley, Reading, Mass., 1956, p. 252. MR 18, 283.

3. J. R. EHRMAN, "Prime divisors of Mersenne numbers," TN-66-40, Stanford Linear Accelerator Center, Stanford, Calif.

4. SIDNEY KRAVITZ, "Divisors of Mersenne numbers 10,000 < p < 15,000," Math. Comp., v. 15, 1961, p. 292. MR 23 #A833.

5. Review No. 113, Math. Comp., v. 19, 1965, p. 686.